私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

相關(guān)鏈接
聯(lián)系方式
  • 通信地址:天津市西青區(qū)賓水西道399號(hào)天津工業(yè)大學(xué)化學(xué)與化工學(xué)院化學(xué)工程與工藝系6D518
  • 郵編:300387
  • 電話:022-83955663
  • 傳真:022-83955663
  • Email:bianxihui@163.com
當(dāng)前位置:> 首頁(yè) > 論文著作 > 正文
Grey wolf optimizer for variable selection in quantification of quaternary edible blend oil by ultraviolet-visible spectroscopy
作者:Rongling Zhang, Xinyan Wu, Yujie Chen, Yang Xiang, Dan Liu, Xihui Bian*
關(guān)鍵字:Edible blend oil; Spectral analysis; Variable selection; Multivariate calibration; Grey wolf optimizer
論文來(lái)源:期刊
具體來(lái)源:Molecules, 2022, 27 (16), 5141
發(fā)表時(shí)間:2022年

   A novel swarm intelligence algorithm, discretized grey wolf optimizer (GWO), was introduced as a variable selection tool in edible blend oil analysis for the first time. In the approach, positions of wolves were updated and then discretized by logical function. The performance of wolf pack, the iteration number and the number of wolves were investigated. The partial least squares (PLS) was used to establish and predict single oil contents in samples. To validate the method, 102 edible blend oil samples containing soybean oil, sunflower oil, peanut oil and sesame oil were measured by ultraviolet-visible (UV-Vis) spectrophotometer. Results demonstrate that GWO-PLS models can provide best prediction accuracy with least variables compared with full-spectrum PLS, Monte Carlo uninformative variable elimination-PLS (MCUVE-PLS) and randomization test-PLS (RT-PLS). The determination coefficients (R2) of GWO-PLS are all above 0.95. Therefore, the research indicates the feasibility of using discretized GWO for variable selection in rapid determination of quaternary edible blend oil.

主站蜘蛛池模板: 南澳县| 凤凰县| 巫溪县| 平南县| 庆安县| 莫力| 华坪县| 繁昌县| 定安县| 镇巴县| 景宁| 灯塔市| 娄底市| 金沙县| 鄯善县| 巍山| 屏东市| 庄河市| 四子王旗| 扬中市| 铁岭市| 读书| 崇信县| 英吉沙县| 苏尼特左旗| 东宁县| 陈巴尔虎旗| 康平县| 莎车县| 大姚县| 都江堰市| 德州市| 南京市| 富裕县| 昭苏县| 获嘉县| 和顺县| 同德县| 屯昌县| 外汇| 日照市|