私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

相關(guān)鏈接
聯(lián)系方式
  • 通信地址:天津市西青區(qū)賓水西道399號天津工業(yè)大學化學與化工學院化學工程與工藝系6D518
  • 郵編:300387
  • 電話:022-83955663
  • 傳真:022-83955663
  • Email:bianxihui@163.com
當前位置:> 首頁 > 論文著作 > 正文
Machine learning-assisted carbon dots synthesis and analysis: State of the art and future directions
作者:Fanyong Yan*, Ruixue Bai, Juanru Huang, Xihui Bian, Yang Fu*
關(guān)鍵字:Carbon dots, Machine learning, Spectroscopy analysis, Optimized synthesis, Mechanistic elaboration
論文來源:期刊
具體來源:TrAC Trends in Analytical Chemistry, 2025, 184, 118141
發(fā)表時間:2025年

Carbon dots (CDs) are considered to be one of the key nanomaterials for novel sensors and detection platforms. While the limitations, including long synthesis cycles and complex data handling, still remain. The machine learning (ML), a powerful tool in accelerating analysis and optimizing results, exhibits elevated precision and generalizability, assumes a pivotal role when integrated with CDs. This review summarizes the recent advancements in ML-assisted CDs technologies, encompassing synthesis and analysis. It provides insight into model architecture, where traditional models are used for spectroscopy classification and quantification, while ensemble learning and neural networks improve modelling accuracy. Additionally, interspersed models and density functional theory (DFT) are integrated as needed. Paving the way for the application of ML in the synthesis, analysis, optimization, and elaboration of CDs. Lastly, the challenges and future prospects of the combination are described.

主站蜘蛛池模板: 东辽县| 泰宁县| 延津县| 大渡口区| 永清县| 肥东县| 盖州市| 张家川| 于都县| 临西县| 潜山县| 敖汉旗| 旬邑县| 沙河市| 牡丹江市| 手游| 渝北区| 枝江市| 青州市| 阜康市| 吉首市| 都兰县| 合肥市| 平邑县| 东丽区| 台州市| 孝感市| 霍邱县| 洛宁县| 赣榆县| 吴忠市| 太仓市| 横峰县| 扶风县| 滕州市| 久治县| 小金县| 交城县| 麦盖提县| 久治县| 甘孜|