私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

相關鏈接
聯系方式
  • 通信地址:天津市西青區賓水西道399號天津工業大學化學與化工學院化學工程與工藝系6D518
  • 郵編:300387
  • 電話:022-83955663
  • 傳真:022-83955663
  • Email:bianxihui@163.com
當前位置:> 首頁 > 論文著作 > 正文
Machine learning-assisted carbon dots synthesis and analysis: State of the art and future directions
作者:Fanyong Yan*, Ruixue Bai, Juanru Huang, Xihui Bian, Yang Fu*
關鍵字:Carbon dots, Machine learning, Spectroscopy analysis, Optimized synthesis, Mechanistic elaboration
論文來源:期刊
具體來源:TrAC Trends in Analytical Chemistry, 2025, 184, 118141
發表時間:2025年

Carbon dots (CDs) are considered to be one of the key nanomaterials for novel sensors and detection platforms. While the limitations, including long synthesis cycles and complex data handling, still remain. The machine learning (ML), a powerful tool in accelerating analysis and optimizing results, exhibits elevated precision and generalizability, assumes a pivotal role when integrated with CDs. This review summarizes the recent advancements in ML-assisted CDs technologies, encompassing synthesis and analysis. It provides insight into model architecture, where traditional models are used for spectroscopy classification and quantification, while ensemble learning and neural networks improve modelling accuracy. Additionally, interspersed models and density functional theory (DFT) are integrated as needed. Paving the way for the application of ML in the synthesis, analysis, optimization, and elaboration of CDs. Lastly, the challenges and future prospects of the combination are described.

主站蜘蛛池模板: 平塘县| 凯里市| 仙游县| 涿州市| 报价| 鄂州市| 孙吴县| 宝兴县| 保德县| 襄城县| 永仁县| 大港区| 克东县| 巨野县| 珠海市| 黄平县| 茶陵县| 麻栗坡县| 交口县| 灌云县| 泌阳县| 郁南县| 革吉县| 府谷县| 乌什县| 太原市| 汉川市| 东乌珠穆沁旗| 山阳县| 濮阳市| 黄梅县| 于都县| 山东省| 佳木斯市| 苏州市| 分宜县| 南陵县| 柳河县| 宁河县| 江安县| 淮滨县|