私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:陜西省西安市友誼西路127號
  • Zip:710072
  • Tel:029-88431638
  • Fax:
  • Email:nwpugjw@163.com
Current Location :> Home > Publications > Text
[J Mater Chem A]Indacenodithiophene: A Promising Building Block for High Performance Polymer Solar Cells
writer:Yongxi Li, Minchao Gu, Zhe Pan, Bin Zhang, Xutong Yang, Junwei Gu* and Yu Chen*
keywords:ndacenodithiophene, Fused aromatic rings, Polymer solar cells, Non-fullerene acceptors
source:期刊
specific source:Journal of Materials Chemistry A
Issue time:2017年

Harvesting energy directly from sunlight using photovoltaic technology has become an essential component of future global energy production. Although silicon-based inorganic materials have still played a dominant role in the market, problems for inorganic materials-based solar cells mainly lie in (1) high cost of production and technical difficulties in the fabrication of large-area cells and (2) the highly purified silicon supply problem. In contrast to inorganic photovoltaic materials, organic/polymer photovoltaic materials have currently become of broader interest owing to their great potential to bring about a major breakthrough in reducing the cost of solar cells. As a promising building block to construct narrow bandgap semiconductors for high efficient photovoltaics, structurally well-defined indacenodithiophene (IDT) and its derivatives have inspired great interest in the industrial and academic communities over recent years due to their rigidified and tunable coplanar fused ring aromatic structures, and 3D conformation as well. The aromatic fused-ring blocks efficiently restrain rotational disorder and consequently lower reorganization energy. An encouraging power conversion efficiency of more than 12% has been achieved in the IDT-based polymer solar cells. This review surveys recent research advances in the area of IDT-based conjugated materials for photovoltaic applications. The factors affecting the bandgaps, molecular energy levels, film morphologies, as well as the photovoltaic performance of these materials have also been discussed.