私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:陜西省西安市友誼西路127號(hào)
  • Zip:710072
  • Tel:029-88431638
  • Fax:
  • Email:nwpugjw@163.com
Current Location :> Home > Publications > Text
[ACS Applied Materials & Interfaces]Highly Thermal Conductivities, Excellent Mechanical Robustness and Flexibility, and Outstanding Thermal Stabilities of Aramid Nanofiber Composite Papers with Nacre-Mimetic Layered Structures
writer:Tengbo Ma, Yongsheng Zhao, Kunpeng Ruan, Xirui Liu, Junliang Zhang, Yongqiang Guo, Xutong Yang, Junwei Gu
keywords:Thermal Conductivities,Composite Papers
source:期刊
specific source:ACS Applied Materials & Interfaces
Issue time:2020年
Aramid nanofiber (ANF) paper has shown potential applications in flexible electronics. However, its inherent low thermal conductivity coefficient (λ) values might threaten the safety of devices under a high-power working condition. In this work, polydopamine-functionalized boron nitride nanosheet (BNNS@PDA)/ANF thermally conductive composite papers with nacre-mimetic layered structures were prepared via highly efficient vacuum-assisted filtration followed by hot pressing. For a given BNNS loading, the surface functionalization of BNNS could further enhance the thermal conductivities and mechanical properties of BNNS@PDA/ANF composite papers. BNNS@PDA/ANF composite papers presented anisotropic thermal conductivities, and the through-plane (λ⊥) and in-plane (λ∥) values of the 50 wt % BNNS@PDA/ANF composite papers reached 0.62 and 3.94 W/mK, 181.8 and 196.2% higher than those of original ANF paper, respectively, which were also higher than those of 50 wt % BNNS/ANF composite papers (λ⊥ = 0.52 W/mK and λ∥ = 3.33 W/mK). The tensile strength of the 50 wt % BNNS@PDA/ANF composite papers reached 36.8 MPa, 30.5% higher than that of 50 wt % BNNS/ANF composite papers (28.2 MPa). In addition, the heat resistance index (THRI) of the 50 wt % BNNS@PDA/ANF composite papers was further increased to 223.1 °C. Overall, our fabricated BNNS@PDA/ANF composite papers possess highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities, showing great potential applications in the fields of intelligent wearable equipment, flexible supercapacitors, and flexible electronics.