私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:山東第一醫(yī)科大學化學與制藥工程學院,科技創(chuàng)新中心,山東濟南
  • Zip:250021
  • Tel:18865922696
  • Fax:
  • Email:jiangrujian@sdfmu.edu.cn
Current Location :> Home > Publications > Text
【Journal of Colloid And Interface Science IF=9.965】A photothermal therapy enhanced mechano-bactericidal hybrid nanostructured surface
writer:張鑫,蔣如劍等
keywords:Environmentally friendly antibacterial Mechano-bactericidal Photothermal Antibacterial resistan
source:期刊
Issue time:2023年
Polymeric materials that have been extensively applied in medical devices, wearable electronics, and food packaging are readily contaminated by bothersome pathogenic bacteria. Bioinspired mechano-bactericidal surfaces can deliver lethal rupture for contacted bacterial cells through mechanical stress. However, the mechanobactericidal activity based only on polymeric nanostructures is not satisfactory, especially for the Gram-positive strain which is generally more resistant to mechanical lysis. Here, we show that the mechanical bactericidal performance of polymeric nanopillars can be significantly enhanced by the combination of photothermal therapy. We fabricated the nanopillars through the combination of low-cost anodized aluminum oxide (AAO) template-assisted method with an environment-friendly Layer-by-Layer (LbL) assembly technique of tannic acid (TA) and iron ion (Fe3+). The fabricated hybrid nanopillar exhibited remarkable bactericidal performances (more than 99%) toward both Gram-negative Pseudomonas aeruginosa (P. aeruginosa) and stubborn Gram-positive Staphylococcus aureus (S. aureus) bacteria. Notably, this hybrid nanostructured surface displayed excellent biocompatibility for murine L929 fibroblast cells, indicating a selective biocidal activity between bacterial cells and mammalian cells. Thus, the concept and antibacterial system described here present a low-cost, scalable, andhighly repeatable strategy for the construction of physical bactericidal nanopillars on polymeric films with high performance and biosafety, but without any risks of causing antibacterial resistance.