私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:上海市松江區人民北路2999號 東華大學材料學院
  • Zip:201620
  • Tel:86-21-55664197
  • Fax:
  • Email:txliu@fudan.edu.cn
Current Location :> Home > Publications > Text
241. Selectively enhanced sensing performance for oxidizing gases based on ZnO nanoparticle-loaded electrospun SnO2 nanotube heterostructures.
writer:K. D. Diao,Y. P. Huang, M. J. Zhou,J. C. Zhang, Y. J. Tang, S. X. Wang, T. X. Liu, X. D. Cui*
keywords:Sensing performance, ZnO nanoparticle, Electrospinning, SnO2 nanotube heterostructures
source:期刊
specific source:RSC Adv., 2016, 6, 28419-28427.
Issue time:2016年
In this work, we present gas sensors based on ZnO nanoparticle-loaded electrospun SnO2 nanotube (ZnO/SnO2) n–n heterostructures (HSs) synthesized by electrospinning combined with facile thermal decomposition. The sensing properties of the pristine SnO2 nanotubes (NTs) and ZnO/SnO2 HSs were investigated toward the representative oxidizing (NO2) and reducing (H2, CO) gases. Results show that the as-prepared ZnO/SnO2 HSs exhibit selectively enhanced and diminished sensing performances for oxidizing and reducing gases, respectively. These phenomena are closely associated with the modulation of the local depletion layer on the surface of SnO2 nanoparticles (NPs) caused by charge transfer at the heterojunctions due to work function difference. A modified grain boundary-controlled sensing mechanism is proposed to describe charge transport in sensing layers based on the contact potential barriers between nanoparticles. Our study indicates that the selection of material system and their synergism are keys to the effective design of gas sensors with semiconducting metal oxide HSs.