私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:湖南長沙岳麓區麓山南路湖南大學材料科學與工程學院
  • Zip:410082
  • Tel:無
  • Fax:工程實驗大樓343
  • Email:wangjianfeng@hnu.edu.cn
Current Location :> Home > Publications > Text
Role of poly(ethylene glycol) grafted silica nanoparticle shape in toughened PLA-matrix nanocomposites
writer:Shuang Xia, Xiaobing Liu, Jianfeng Wang, Ze Kan, Hong Chen, Wenxin Fu, Zhibo Li.*
keywords:particle-reinforcement, polymer-matrix composites (PMCs), mechanical properties
source:期刊
specific source:Composites Part B: Engineering
Issue time:2019年

In order to study the effect of nanoparticle shape on the mechanical properties of polymer-matrix composites, two types of poly(ethylene glycol) (PEG) grafted silica nanoparticles, i.e., nanoplatelets and nanospheres, with similar surface characteristics are prepared through biomimetic synthesis. These two nanoparticles are then incorporated into amorphous poly(D,L-lactide) (PLA for short) as nano-fillers. SEM images confirm the uniform distribution of polymer grafted nano-fillers in PLA-matrix. The tensile tests results show that the elongation-at-break of nanoplatelets/PLA is almost twice as high as that of nanospheres/PLA at the loading level of 1.8–2.4 vol%, indicating that nanoplatelets have much more significant toughening effect than nanospheres. The following comparative analysis demonstrated that two nanoparticles exhibit different behaviors during shear yielding of PLA, leading to different ways of energy dissipation and toughening. In addition, the creep behaviors and dynamic mechanical properties are also closely related to the shape of nanoparticles.