私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:浙江理工大學(xué),材料與紡織學(xué)院,先進(jìn)紡織材料與制備技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室
  • Zip:310018
  • Tel:0571-86843071
  • Fax:0571-86843082
  • Email:342099315@qq.com
Current Location :> Home > Publications > Text
Reinforcement of transparent poly(3-hydroxybutyrate-co-3- hydroxyvalerate) by incorporation of functionalized carbon nanotubes as a novel bionanocomposite for food packaging
writer:Hou-Yong Yu, Zong-Yi Qin, Bin Sun, Xiao-Gang Yang, Ju-Ming Yao
keywords:Carbon nanotubes, Particle-reinforced composites, Mechanical properties, Thermal properties, Casting
source:期刊
Issue time:2015年
Bionanocomposites of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced with PHBV-grafted multi-walled carbon nanotubes (PHBV-g-MWCNTs) were prepared through a simple solution casting method. The obtained nanocomposite films containing 1–10 wt.% PHBV-g-MWCNTs were transparent in the visible wavelength range. In addition, the PHBV-g-MWCNTs were uniformly dispersed throughout the PHBV matrix and thus improved the thermal stability and mechanical, barrier, and migration properties of PHBV. Compared to neat PHBV, the tensile strength and Young’s modulus of the nanocomposite film containing 7 wt.% PHBV-g-MWCNTs were enhanced by 88% and 172%, respectively, and the maximum decomposition temperature of the nanocomposite film was 22.3 °C greater than that of neat PHBV. Moreover, the nanocomposites exhibited a wider melt-processing window and reduced water uptake and water vapor permeability. Furthermore, the migration levels of simulants in all of the nanocomposites were below the overall migration limits required by current legislative standards for food packaging materials in both non-polar and polar simulants.