私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:浙江理工大學,材料與紡織學院,先進紡織材料與制備技術教育部重點實驗室
  • Zip:310018
  • Tel:0571-86843071
  • Fax:0571-86843082
  • Email:342099315@qq.com
Current Location :> Home > Publications > Text
Waste pomelo peels-derived ultralow density 3D-porous carbon aerogels: Mechanisms of “Soft-rigid” structural formation and solar-thermal energy storage conversion
writer:Ze Ji, Somia Yassin Hussain Abdalkarim , Huimin Li, Rabie A.M. Asad, Hou-Yong Yu
keywords:Wasted pomelo peel , Aerogel, Carbonization, “Soft-rigid” structure, Solar-thermal conversion
source:期刊
specific source:doi.org/10.1016/j.solmat.2023.112453
Issue time:2023年

Renewable energy from a natural resource is currently significant awareness and is being discussed by researchers worldwide to solve the energy crises. This work paves the way for developing efficient solar-to-thermalenergy storage conversion based on the “Soft-rigid” structural formation mechanism of carbon aerogel. Here, low-cost wasted pomelo peels derived three-dimensional (3D) porous networked carbon aerogels (PCAs) as a support matrix for paraffin wax (PW) as organic phase change materials (PCM). Moreover, composite phase change materials (CPCMs) show ultralow density, excellent thermal stability, enhanced thermal and electrical conductivities, outstanding shape stability, and leakage-proof ability. The impregnation loading ratio of PWbased CPCM3 reached 95.6%, ascribed to the unique “Soft-rigid” network structure of PCAs. More importantly, the change in the “Soft-rigid” structure endows PCA750 with a high compressive strength of 466 kPa at 60% compression rates. The obtained CPCM2 displayed a significant latent thermal storage capacity of 159.9 J/g and exhibited superior thermal reliability after 25 frequent heating/cooling cycles. The effective carbonization temperature of CPCM2 caused a significant increase in light absorbance; thus, high solar-to-thermal energy conversion efficiency (85.1%). This study provides new ways to convert waste low–value biomass materials into high-value renewable energy (solar-thermal-electricity) with long-term reusability via a simple and green technology. These are tremendous economic benefits in the thermal energy storage sectors.