私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:浙江理工大學(xué),材料與紡織學(xué)院,先進(jìn)紡織材料與制備技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室
  • Zip:310018
  • Tel:0571-86843071
  • Fax:0571-86843082
  • Email:342099315@qq.com
Current Location :> Home > Publications > Text
Wet Spinning Fabrication of Robust and Uniform Intrinsically Conductive Cellulose Nanofibril/Silk Conductive Fibers as Bifunctional Strain/Humidity Sensor in Potential Smart Dressing
writer:Ruixin Gong,Yanjuan Dong,Dan Ge,Zhouyu Miao,Hou?Yong Yu
keywords:Silk fibroin,CNFene,Mechanical strength,Wound monitoring
source:期刊
Issue time:2024年

Silk fibroin (SF) with skin-like features and function shows great prospects in wearable electronics and smart dressing. However, the traditional method of loading conductive materials on physical interfaces can easily lead to the detachment of conductive materials, poor mechanical properties, and unstable conductivity, which hinder their practical application. Herein, simple wet spinning was utilized to fabricate multifunctional regenerated silk fibers reinforced with different contents of intrinsically conductive cellulose nanofibril (CNFene). Significant enhancements in fiber homogeneity, thermal stability, conductivity, mechanical strength, and sensing ability were achieved due to more regular orientation of silk fibroin molecules and strong intermolecular interactions with CNFene. The optimized sample  (SF1) with high sensitivity (100 ms), excellent washing/rubbing resistance, and superb waterproof properties (22 days) can comprehensively monitor human motion and weak signals. Surprisingly, inspired by the different humidity levels around wounds at different stages of healing,  SF1 with favorable humidity sensitivity can be developed as a smart dressing for monitoring wound healing. Therefore, this work provides a simple preparation route of smart high-performance fiber for flexible electronic devices, smart dressing, and underwater smart textiles