私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

Links
Contact Info.
  • Address:浙江理工大學,材料與紡織學院,先進紡織材料與制備技術教育部重點實驗室
  • Zip:310018
  • Tel:0571-86843071
  • Fax:0571-86843082
  • Email:342099315@qq.com
Current Location :> Home > Publications > Text
Highly sensitive and structure stable polyvinyl alcohol hydrogel sensor with tailored free water fraction and multiple networks by reinforcement of conductive nanocellulose
writer:Yanjuan Dong , Zhiying Gao , Qingling Mi , Yonghao Tian , Fengyuan Zou , Chundi Pan,Hou-Yong Yu
keywords:Polyvinyl alcohol hydrogel sensors,Conductive nanocellulose,Tough-elastic multiple networks
source:期刊
Issue time:2024年
The wearable composite hydrogel sensors with high stretchability have attracted much attention in recent years, while the traditional hydrogels have weak molecular (chain) interaction and contain a lot of free water, leading to poor mechanical properties, unstable environmental tolerance and sensing ability. Herein, a novel ice crystal extrusion-crosslinking strategy is used to obtain polyvinyl alcohol (PVA) hydrogel with conductive nanocellulose-poly (3,4-ethylenedioxythiophene) (CNC-PEDOT) as skeleton network, sodium alginate (SA) and Ca2+ as tough segment of multi-bonding network. This strategy synergistically enhanced the interaction of hydrogen bonds and calcium (Ca2+) ion chelation within the hydrogel, building highly sensitive and stable multiple tough-elastic networks. Therefore, the optimal hydrogel sensor (PVA/SA-CP45) shows good structural stability, robust mechanical performance, excellent compress (Sensitivity = 68.7), stretching sensitivity (Gauge factor = 4.16), ultra-wide application range (?105–60 °C), fast response/relaxation time and outstanding dynamic durability with 6000 stretching-releasing cycles. Especially, it can give good sensing performance for omnidirectional monitoring of human motion and weak signals. Moreover, it was also designed into multifunctional sensing systems for gait guidance of model training and real-time monitoring ammonia gas for food preservation and public environmental safety, demonstrating great potential in flexible sensors devices for health monitoring.