私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

相關鏈接
聯系方式
  • 通信地址:浙江理工大學,材料與紡織學院,先進紡織材料與制備技術教育部重點實驗室
  • 郵編:310018
  • 電話:0571-86843071
  • 傳真:0571-86843082
  • Email:342099315@qq.com
當前位置:> 首頁 > 論文著作 > 正文
Green Nanocomposites Based on Functionalized Cellulose Nanocrystals: A Study on the Relationship between Interfacial Interaction and Property Enhancement
作者:Hou-Yong Yu, Zong-Yi Qin, Chen-Feng Yan, Ju-Ming Yao
關鍵字:Cellulose nanocrystals, Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), Bionanocomposite, Interfacial interaction, Mechanical property, Thermal stability
論文來源:期刊
發表時間:2015年
Functionalized cellulose nanocrystals (PHCNs) were synthesized by grafting poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) onto cellulose nanocrystals (CNCs). The resultant PHCNs with high loading levels were uniformly dispersed into a PHBV matrix to produce fully biodegradable nanocomposites, which showed superior mechanical performance and thermal stability. Compared with those of neat PHBV, the tensile strength, Young’s modulus, and elongation at break of the nanocomposites with 20 wt % PHCNs were enhanced by 113%, 95%, and 17%, respectively. Meanwhile, the initial decomposition temperature (T0), temperature at 5% weight loss (T5%), maximum decomposition temperature (Tmax), and complete decomposition temperature (Tf) increased by 29.6, 23.9, 34.7, and 37.0 °C, respectively. This improvement was primarily ascribed to uniform dispersion of the PHCNs and to strong interfacial adhesion between filler and matrix due to the chain entanglements, cocrystallization, and hydrogen bonding interactions. Moreover, the nanocomposites showed a wider melt-processing window than neat PHBV. Furthermore, the crystallinity and hydrophilic properties of the nanocomposites could be modulated through with the increase of the PHCN contents. In addition, the nanocomposites were nontoxic to human MG-63 cells. Such high performance bionanocomposites have great potential in expanding the utilization of CNCs from natural resources and practical application as PHBV-based bioplastic and biomedical materials.
主站蜘蛛池模板: 辉县市| 阳高县| 凤台县| 凤山市| 九寨沟县| 区。| 建昌县| 武隆县| 龙胜| 阳西县| 清流县| 东阿县| 宜宾县| 锦州市| 堆龙德庆县| 天柱县| 个旧市| 皮山县| 嵊泗县| 万年县| 昭平县| 霍州市| 泸州市| 桐城市| 启东市| 昌平区| 碌曲县| 新营市| 忻城县| 威海市| 浦江县| 望城县| 安徽省| 贵港市| 苏尼特左旗| 井陉县| 泗洪县| 扎赉特旗| 三原县| 临泉县| 神池县|