私密直播全婐app免费大渔直播,国产av成人无码免费视频,男女同房做爰全过程高潮,国产精品自产拍在线观看

相關(guān)鏈接
聯(lián)系方式
  • 通信地址:北京市昌平區(qū)高教園南三街9號(hào)北京航空航天大學(xué)實(shí)驗(yàn)七號(hào)樓409
  • 郵編:102206
  • 電話:---
  • 傳真:
  • Email:zhengym@buaa.edu.cn
當(dāng)前位置:> 首頁 > 最新動(dòng)態(tài) > 正文
AdvancedScienceNews-Sending Droplets from Pillar to Post

https://www.advancedsciencenews.com/sending-droplets-from-pillar-to-post/


In the fields of cell manipulation and microfluidic technologies, being able to control the behavior of fluids is a considerable challenge. To meet these challenges, the design of dynamic topologies of structures is required.

In an article in Advanced Functional Materials, Professor Yongmei Zheng and co-workers from the Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, and Beihang University, China, develop nano- and micro-pillar arrays (MNAs) to control microdroplet transport of fluids via magnetic induction.


These novel MNAs were fabricated by pouring polydimethylsiloxane (PDMS) and NdFeB  composites into micro/nanopillar molds, and then these pillars were coated with SiO2 nanoparticles. It is these tiny pillars that are then magnetized, and become the physical component that can control droplet transportation in a magnetic field. These pillars are shown in the figure below.

In the presence of a magnetic field, these pillars bend and tilt, and the angle of action can be controlled by the intensity of the applied magnetic field (AMF). A maximum tilt-angle of 59° can be achieved. Furthermore, the direction of the tilt can be controlled depending on the orientation of the AMF.

These MNAs are hydrophobic, and so  when they are wetted, the droplets that form can be moved thanks to the bending motion of these pillars, allowing the droplets to be transported in the direction of the tilt. The two videos at the bottom of this article first show this bending motion in action, and then the tranportation of the water droplet in this direction.

This exciting material, easily fabricated from molds, shows how novel properties can arise from the simple properties such as hydrophobacity and magnetization. The authors hope that such an array of nano- and micro-pillars, affected by magnetic fields, can one day be applied to the fields of cell manipulation and microfluidics technologies.


主站蜘蛛池模板: 东城区| 新沂市| 安仁县| 庐江县| 罗田县| 平远县| 普宁市| 浦县| 东方市| 当涂县| 玉环县| 台州市| 安新县| 香港| 酒泉市| 会宁县| 呼图壁县| 丰宁| 西昌市| 泸溪县| 繁昌县| 盐池县| 古丈县| 沧源| 美姑县| 南京市| 公安县| 吕梁市| 台东市| 炎陵县| 永和县| 元阳县| 蒙阴县| 陵川县| 岑巩县| 广饶县| 吐鲁番市| 潼南县| 盐城市| 娄底市| 贡觉县|