簡介: |
嵌段共聚物除了具有分子量分布之外,還具有其它的多重多分散性,如嵌段長度分布、化學組分分布、序列分布等,因此其分離和表征是一項頗具挑戰(zhàn)性的工作。臨界條件液相色譜(liquidchromatographyatcriticalcondition,LCCC)作為一種新型的液相色譜分離技術(shù),可以將嵌段共聚物中的某種嵌段處于其對應均聚物液相色譜臨界條件下,那么該嵌段將處于“色譜不可見,(chromatographicinvisible)狀態(tài),該種嵌段不會對整個嵌段共聚物的保留時間產(chǎn)生影響,從而可以根據(jù)其它嵌段長度來分離嵌段共聚物。我們采用蒙特卡羅方法(MonteCarlo,MC),對LCCC分離嵌段共聚物的理論假設(shè),即嵌段共聚物種的某種嵌段在對應均聚物液相色譜臨界條件下可處于“色譜不可見”狀態(tài),展開模擬研究。模擬結(jié)果顯示當A嵌段處于色譜可見狀態(tài)時候,B嵌段具有自己獨立的液相色譜臨界條件,而且該臨界條件不同于B均聚物的液相色譜臨界條件。這表明B嵌段在B均聚物液相色譜臨界條件下可能不能完全“色譜不可見”。 |
|